双主轴车削加工中心高效应用及研究

来源:造景新风向
责任编辑:王强
字体:

目前,国内较陈旧的曲轴生产线多数由普通机床和专用机床组成,生产效率和自动化程度相对较低。粗加工设备一

随着机械制造技术的不断发展,零件结构形式越来越复杂,对加工精度的要求也越来越高。 加工过程中的多次换装不仅使得零件的加工质量无法得到保障,同时还因多次的工件安装、对刀等过程大大降低了加工效率。

对于这类机床,目前国内还比较少,而且很多人都不知道它的重要性,以及如何将它功能发挥到极致。其实车铣复

双主轴车削加工中心能够使得需要多个加工工序的工件一次装夹下完成所有加工,不仅减少了因多次装夹而导致的加工误差,还提高了加工效率,能很好地满足现代企业生产要求,尤其在航空、航天等领域,双主轴车削加工中心的高效应用具有举足轻重的作用。 然而,由于该类机床的结构及运动形式复杂多样,在实际应用中存在数控程序编写及正确性检测困难的问题,这些问题制约着车削中心的高效应用,给企业快速生产带来困难[1]。

vericut可以建双主轴的机床,但双独立系统的没有听说过

利用虚拟仿真技术,以实际机床为原型,在虚拟仿真平台中构建机床的仿真加工系统,使其具有与实际机床完全一致的加工功能,对工件进行虚拟仿真加工。 该方式能够在不消耗生产资源的条件下,快速完成工件的虚拟加工,检验数控程序的正确性,同时能够对加工过程中存在的质量问题进行预判,为实际加工过程中机床的安全性及高效性提供可靠保障。

排钻尽量加工中心进行,尺寸精确而且效率高。

1  、虚拟仿真系统构建过程

随着科学技术的发展以及世界先进制造技术的兴起和不断成熟,超高速切削、超精密加工等技术的应用,对数控机

虚拟仿真系统是将实际机床在计算机中的完全映射,具有与实际机床一致的加工功能。 该系统在使用过程中不消耗实际的生产资源,加工过程快,且能够不断反复的进行加工,能很好的解决复杂零件试切过程耗时、耗力等问题,对企业新产品研发生产非常重要。

数控车床1.绝对坐标是在建立工件坐标系后,形成的坐标,用(X,Y)表示,X是工件的回转中心离当前刀具

根据机床的结构及尺寸,在 VERICUT 中建立虚拟机床模型。 其主要过程如图 1 所示。

个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生

2、构建虚拟仿真系统

感谢邀请。随着生活条件越来越优越,很多人就开始暴饮暴食,大胆吃各种加工食品,零食甜点,完全不再注重饮食健康,直到吃出四高慢性疾病(高血压、高血糖、高血脂、高尿酸),才开始后悔,有心脑血管慢性疾病的朋友平时一定要注意清淡饮食,原理高盐高油高脂高糖食物,增加蔬菜比例,粗杂粮、薯类比例,平时还应该适量锻炼身体,增强体质。高尿酸的朋友可以适当吃一些有助于降尿酸的食物,例如玉米须(可以熬成糖水服用),薏仁,向日葵心,芦根,石韦。药材上还有葛根、薏米、白茅根,车前草,车前子。另外可以增加含钾丰富食物的摄入,包括瘦肉、淡水鱼(海产品中却富含嘌呤,所以要吃淡水鱼非海鱼)、禽类等。平时可以多吃一些低嘌呤的食物。

2.1  机床结构分析

下面,开始今天的鉴定干货分享先来看一张正品戒指放大图精美的外观,精致的工艺技术,严格的质检流程,也让卡地亚品质经久不衰,之所以那么火热,也正因如此。下面我们通过几组对比图,来详细分析下:鉴图示:上真下假这张图的五金刻字制作工艺也正好解释了上期我们大部分同学都答错的课堂作业。上图我们能明显看出,假货的刻字内部颜色与戒指本身的颜色完全不同,而正品的刻字内部颜色依然还是金色。再看刻字深度,假货明显比正品浅一些。因为如果假货再刻深一点他就完全暴露他工艺缺陷,如果克服这些,假货商业必须更换更先进的设备。成本远远吃不消。鉴图示:上假下真每个卡地亚LOVE系列都有这样的螺丝状,这个和戒指是一体的,是后期凿刻

EMCO maxxturn65 双主轴车削中心配备一个带有 X、Y、Z1 运动轴的刀塔,主轴带有C1 旋转轴功能,副主轴带有 Z2、C2 两个运动轴。 如图 2 所示,床身的工作面为高刚度 45°易排屑倾斜结构,其上装有主轴、副主轴和沿床身滑动的床鞍,其中主轴固定于床身,沿床身滑动的副主轴与主轴轴向对置,伺服动力刀架固定于沿床鞍 X 轴方向滑动的滑板上。

谢邀。我只能说,哥们,恭喜你,头发绿了。首先,表明下自己的立场,10多年的撩妹经验告诉我,我绝对不相信异性之间有纯友谊。我觉得男女之间的友谊,如果真的到了单独出去旅行的地步,很多事情都会发酵,而之间也必然存着些许不言而喻的情愫在里面。举一个我哥们的例子,很狗血也很令人值得反思。我哥们的女朋友跟题主的老婆一样,跟我哥们吵完架,突然说要一个人出去走走散散心,去了所在城市周边2小时车程的一个城市,呆了3~4天。之前我哥们也没多想,觉得去放松下心情确实蛮好的。但是!(注意,凡事都怕但是),故事在2个月之后有了神转折。我哥们的女朋友怀孕了,当时哥们很纳闷,每次都戴套,怎么就怀孕了呢?后来越想越不对劲,开

图 1  虚拟仿真系统构建过程

现在越来越多的消费者在选车购车的过程中,似乎更偏向于合资车型。消费者选择合资车的原因不外乎是技术成熟可靠、省心以及小毛病少等特点,对于自主品牌的车型相对而言选择的消费者就没那么多。殊不知其实现在有很多自主品牌车型都采用了合资车型的技术,今天就来盘点一些用了“合资芯”的自主品牌SUV。东风风神·AX7指导价:9.97-14.97万排量:1.4T2.0L2.3L油耗:7.6-9.5L/100km采用技术:老款CR-V底盘、PSA动力东风风神AX7在底盘技术上用了旧款本田CR-V的技术,在外观设计上中规中矩,前脸三条平行的镀铬装饰条颇显沉稳。车身侧面一条贯穿式腰线,看起来车辆动感不少。内饰设计上,风

1. 主轴  2. 副主轴 3. 床身4. 床鞍5. 滑板6. 刀架

图 2  双主轴车削中心结构

2.2  机床参数测量

双主轴车削中心加工过程中工件换装时机床不停机,因此机床各部件的空间位置精度要求较高[2]。建立机床的虚拟仿真加工系统时,准确获取机床各运动部件参数是研究的关键之一。 EMCO maxxturn65双主轴车削中心的参数获取主要通过测量以及查询手册来实现,过激光尺、卷尺、板尺等测量工具完成机床主要外形部件及空间尺寸的测量,关键零部件尺寸及机床极限位置等对建模精度有重要影响的尺寸参数通过查询机床手册或者运行机床后在机床控制面板中读取。

要完整的建立机床模型,所需要的机床参数主要有:主轴、副主轴、刀塔、刀具等重要部件尺寸;机床初始位置、极限位置;运动轴及部件间的空间位置;外形轮廓等。

2.3  机床建模

建立机床的虚拟模型,不仅需要完成各运动部件的三维几何模型,还要赋予其与实际机床相一致的运动关系。 VERICUT 软件中提供了许多运动轴组件,根据实际机床的运动结构,建立其运动树,将各运动部件的三维模型加载到相应的运动组件下即可完成机床模型的建立[3]。 要正确建立机床的运动树,首先要明确机床的运动连。 EMCO maxxturn65 双主轴车削中心包含两条运动链:基座-工件;基座-刀具。

根据确定好的运动链,在 VERICUT 中依次添加相应的运动组件,完成机床运动组件树的创建,如图 3 所示。 创建组件树仅是完成了机床各运动部件间运动关系的建立,

还需添加相应的几何模型。

由于机床机构较复杂,各运动部件几何模型在 VERICUT 中创建较困难,因此,在三维模型在 UG 中建立各部件几何模型,然后将模型保存为 STL 格式文件导入到相应的运动组件下即可。

图 3  机床运动树

2.4  建立刀具库

VERICUT 中提供了丰富的刀具设计样本,根据刀具的具体特征及参数,选择所需结构及尺寸即可生成刀柄、刀片。

刀具生成后,为保证加工的顺利进行,还需根据实际使用中将要用到的刀具特点及参数,设置刀具的驱动点(对刀点)、安装点等参数,如图 4。

图 4  双刃刀具建立

2.5  控制系统配置

为了满足用户需求,VERICUT 系统库中提供了多种不同类型的控制系统,根据实际机床,选择 SI-EMEND840D 系统。 VERICUT 系统库中所提供的为通用控制系统,而为满足双主轴车削中心的加工功能,生产厂家对其定制了一些特殊的加工代码,因此需要对所选控制系统进行二次开发,以保证虚拟加工系统与实际机床具有相同的加工功能。

2.6  机床参数设置

构建完机床的几何模型及相关部件后还需对机床参数进行设置。 机床参数设置的主要目的就是告知机床当加工中出现错误、碰撞等问题时能够及时的进行报警,便于技术人员查找问题所在,并进行修正。

虚拟系统中机床参数主要包括了:机床行程设置、机床各运动轴的初始位置设置、刀具换刀点的设置、碰撞检测距离设置等,正确设置机床参数,对保证仿真加工过程与实际加工的一致性至关重要。

3、仿真加工

3. 1  NC 程序生成

双主轴车削中心加工功能强大,工件结构通常比较复杂,采用手工编程的方式很难实现复杂工件的NC 编写。 在 UG 等三维软件中建立零件的几何模型,并利用 UG 中先进的数控加工功能对工件进行工艺处理,生成正确的刀位轨迹文件,但该文件不能直接被数控机床所识别,因此需对其进行后置处理。

UG 中自带的后置处理模块能够对三轴及以下刀位轨迹文件进行后置处理,生成机床能够直接识别的NC 程序, 而 对 于 三 轴 以 上 的 复 杂 文 件 则 无 能 为力[4]。 针对双主轴车削中心的结构特点,利用 UG 后置处理模块开发专门的后置处理器 MAXX-POST,该后置处理器能够专门对适合双主轴车削中心的工件前置刀位轨迹文件进行处理,生产机床能直接识别的NC 程序,满足加工需要。

3.2  虚拟仿真加工及验证

将 UG 中生成的 NC 程序添加到虚拟仿真系统中,添加毛坯、工件的模型到系统中,进行 G 代码偏置 设置( 即加工对刀) 后,进行仿真加工,如图5所示。 仿真加工中不仅要观察刀具及工件的状态是否合理,还要根据警告内容分析存在的问题并进行处理,确保前置工艺过程、NC 程序的正确性。

4、实际验证

经过虚拟仿真加工,验证 NC 程序的正确性后,对加工工件进行实例验证。 将经过虚拟仿真验证过的 NC 程序加载实际加工机床中,对工件进行实际加工。 加工中刀具的走刀路径与仿真加工一致,没有干涉、碰撞等问题出现,其加工结果如图 6 所示。

图 5  虚拟仿真加工

图 6  实际加工验证

5 、总结

介绍了在 VERICUT 中建立机床虚拟仿真加工系统的一般方法,并以 EMCO maxxturn65 双主轴车削中心为对象,建立其虚拟仿真加工系统。 以一回转体零件为加工样件,对其进行虚拟仿真加工,检验了 NC程序的正确性,并对该样件进行实际加工。 结果表明,该虚拟仿真加工系统能够准确验证 NC 程序的正确性,并正确预知加工中可能出现的干涉、碰撞等危险情况,能有效保证机床使用中的安全性及高效性。请注意:本文为编辑制作专题提供的资讯,页面显示的时间仅为生成静态页面时间而非具体内容事件发生的时间,由此给您带来的不便敬请谅解!

扩展阅读,根据您访问的内容系统为您准备了以下内容,希望对您有帮助。

简述数控机床的发展趋势

引言

从20世纪中叶数控技术出现以来,数控机床给机械制造业带来了*性的变化。数控加工具有如下特点:加工柔性好,加工精度高,生产率高,减轻操作者劳动强度、改善劳动条件,有利于生产管理的现代化以及经济效益的提高。数控机床是一种高度机电一体化的产品,适用于加工多品种小批量零件、结构较复杂、精度要求较高的零件、需要频繁改型的零件、价格昂贵不允许报废的关键零件、要求精密复制的零件、需要缩短生产周期的急需零件以及要求100%检验的零件。数控机床的特点及其应用范围使其成为国民经济和国防建设发展的重要装备。

进入21世纪,我国经济与国际全面接轨,进入了一个蓬勃发展的新时期。机床制造业既面临着机械制造业需求水平提升而引发的制造装备发展的良机,也遭遇到加入世界贸易组织后激烈的国际市场竞争的压力,加速推进数控机床的发展是解决机床制造业持续发展的一个关键。随着制造业对数控机床的大量需求以及计算机技术和现代设计技术的飞速进步,数控机床的应用范围还在不断扩大,并且不断发展以更适应生产加工的需要。本文简要分析了数控机床高速化、高精度化、复合化、智能化、开放化、网络化、多轴化、绿色化等发展趋势,并提出了我国数控机床发展中存在的一些问题。

数控机床的发展趋势

1、高速化

随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。

2、主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;

进给率:在分辨率为0.01μm时,最大进给率达到240m/min且可获得复杂型面的精确加工;

3、运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm时仍能获得高达24~240m/min的进给速度;

4、换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0.5s。德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。

5、高精度化

数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。

6、提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;

7、采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。研究结果表明,综合误差补偿技术的应用可将加工误差减少60%~80%;

采用网格解码器检查和提高加工中心的运动轨迹精度,并通过仿真预测机床的加工精度,以保证机床的定位精度和重复定位精度,使其性能长期稳定,能够在不同运行条件下完成多种加工任务,并保证零件的加工质量。

1、功能复合化

复合机床的含义是指在一台机床上实现或尽可能完成从毛坯至成品的多种要素加工。根据其结构特点可分为工艺复合型和工序复合型两类。工艺复合型机床如镗铣钻复合——加工中心、车铣复合——车削中心、铣镗钻车复合——复合加工中心等;工序复合型机床如多面多轴联动加工的复合机床和双主轴车削中心等。采用复合机床进行加工,减少了工件装卸、更换和调整刀具的辅助时间以及中间过程中产生的误差,提高了零件加工精度,缩短了产品制造周期,提高了生产效率和制造商的市场反应能力,相对于传统的工序分散的生产方法具有明显的优势。

加工过程的复合化也导致了机床向模块化、多轴化发展。德国Index公司最新推出的车削加工中心是模块化结构,该加工中心能够完成车削、铣削、钻削、滚齿、磨削、激光热处理等多种工序,可完成复杂零件的全部加工。随着现代机械加工要求的不断提高,大量的多轴联动数控机床越来越受到各大企业的欢迎。

在2005年中国国际机床展览会(CIMT2005)上,国内外制造商展出了形式各异的多轴加工机床(包括双主轴、双刀架、9轴控制等)以及可实现4~5轴联动的五轴高速门式加工中心、五轴联动高速铣削中心等。

2、控制智能化

随着人工智能技术的发展,为了满足制造业生产柔性化、制造自动化的发展需求,数控机床的智能化程度在不断提高。具体体现在以下几个方面:

加工过程自适应控制技术:通过监测加工过程中的切削力、主轴和进给电机的功率、电流、电压等信息,利用传统的或现代的算法进行识别,以辩识出刀具的受力、磨损、破损状态及机床加工的稳定性状态,并根据这些状态实时调整加工参数(主轴转速、进给速度)和加工指令,使设备处于最佳运行状态,以提高加工精度、降低加工表面粗糙度并提高设备运行的安全性;

加工参数的智能优化与选择:将工艺专家或技师的经验、零件加工的一般与特殊规律,用现代智能方法,构造基于专家系统或基于模型的“加工参数的智能优化与选择器”,利用它获得优化的加工参数,从而达到提高编程效率和加工工艺水平、缩短生产准备时间的目的;

智能故障自诊断与自修复技术:根据已有的故障信息,应用现代智能方法实现故障的快速准确定位;

智能故障回放和故障仿真技术:能够完整记录系统的各种信息,对数控机床发生的各种错误和事故进行回放和仿真,用以确定错误引起的原因,找出解决问题的办法,积累生产经验;

智能化交流伺服驱动装置:能自动识别负载,并自动调整参数的智能化伺服系统,包括智能主轴交流驱动装置和智能化进给伺服装置。这种驱动装置能自动识别电机及负载的转动惯量,并自动对控制系统参数进行优化和调整,使驱动系统获得最佳运行;

智能4M数控系统:在制造过程中,加工、检测一体化是实现快速制造、快速检测和快速响应的有效途径,将测量(Measurement)、建模(Modelling)、加工 (Manufacturing)、机器操作(Manipulator)四者(即4M)融合在一个系统中,实现信息共享,促进测量、建模、加工、装夹、操作的一体化。

3、体系开放化

向未来技术开放:由于软硬件接口都遵循公认的标准协议,只需少量的重新设计和调整,新一代的通用软硬件资源就可能被现有系统所采纳、吸收和兼容,这就意味着系统的开发费用将大大降低而系统性能与可靠性将不断改善并处于长生命周期;

向用户特殊要求开放:更新产品、扩充功能、提供硬软件产品的各种组合以满足特殊应用要求;

数控标准的建立:国际上正在研究和制定一种新的CNC系统标准ISO14649(STEP-NC),以提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程乃至各个工业领域产品信息的标准化。标准化的编程语言,既方便用户使用,又降低了和操作效率直接有关的劳动消耗。

4、驱动并联化

并联运动机床克服了传统机床串联机构移动部件质量大、系统刚度低、刀具只能沿固定导轨进给、作业自由度偏低、设备加工灵活性和机动性不够等固有缺陷,在机床主轴(一般为动平台)与机座(一般为静平台)之间采用多杆并联联接机构驱动,通过控制杆系中杆的长度使杆系支撑的平台获得相应自由度的运动,可实现多坐标联动数控加工、装配和测量多种功能,更能满足复杂特种零件的加工,具有现代机器人的模块化程度高、重量轻和速度快等优点。

并联机床作为一种新型的加工设备,已成为当前机床技术的一个重要研究方向,受到了国际机床行业的高度重视,被认为是“自发明数控技术以来在机床行业中最有意义的进步”和“21世纪新一代数控加工设备”。

5、端化(大型化和微型化)

国防、航空、航天事业的发展和能源等基础产业装备的大型化需要大型且性能良好的数控机床的支撑。而超精密加工技术和微纳米技术是21世纪的战略技术,需发展能适应微小型尺寸和微纳米加工精度的新型制造工艺和装备,所以微型机床包括微切削加工(车、铣、磨)机床、微电加工机床、微激光加工机床和微型压力机等的需求量正在逐渐增大。

6、信息交互网络化

对于面临激烈竞争的企业来说,使数控机床具有双向、高速的联网通讯功能,以保证信息流在车间各个部门间畅通无阻是非常重要的。既可以实现网络资源共享,又能实现数控机床的远程监视、控制、培训、教学、管理,还可实现数控装备的数字化服务(数控机床故障的远程诊断、维护等)。例如,日本Mazak公司推出新一代的加工中心配备了一个称为信息塔(e-Tower)的外部设备,包括计算机、手机、机外和机内摄像头等,能够实现语音、图形、视像和文本的通信故障报警显示、在线帮助排除故障等功能,是独立的、自主管理的制造单元。

7、新型功能部件

为了提高数控机床各方面的性能,具有高精度和高可靠性的新型功能部件的应用成为必然。具有代表性的新型功能部件包括:

高频电主轴:高频电主轴是高频电动机与主轴部件的集成,具有体积小、转速高、可无级调速等一系列优点,在各种新型数控机床中已经获得广泛的应用;

直线电动机:近年来,直线电动机的应用日益广泛,虽然其价格高于传统的伺服系统,但由于负载变化扰动、热变形补偿、隔磁和防护等关键技术的应用,机械传动结构得到简化,机床的动态性能有了提高。如:西门子公司生产的1FN1系列三相交流永磁式同步直线电动机已开始广泛应用于高速铣床、加工中心、磨床、并联机床以及动态性能和运动精度要求高的机床等;德国EX-CELL-O公司的XHC卧式加工中心三向驱动均采用两个直线电动机;

电滚珠丝杆:电滚珠丝杆是伺服电动机与滚珠丝杆的集成,可以大大简化数控机床的结构,具有传动环节少、结构紧凑等一系列优点。

8、高可靠性

数控机床与传统机床相比,增加了数控系统和相应的监控装置等,应用了大量的电气、液压和机电装置,易于导致出现失效的概率增大;工业电网电压的波动和干扰对数控机床的可靠性极为不利,而数控机床加工的零件型面较为复杂,加工周期长,要求平均无故障时间在2万小时以上。为了保证数控机床有高的可靠性,就要精心设计系统、严格制造和明确可靠性目标以及通过维修分析故障模式并找出薄弱环节。国外数控系统平均无故障时间在7~10万小时以上,国产数控系统平均无故障时间仅为10000小时左右,国外整机平均无故障工作时间达800小时以上,而国内最高只有300小时。

9、加工过程绿色化

随着日趋严格的环境与资源约束,制造加工的绿色化越来越重要,而中国的资源、环境问题尤为突出。因此,近年来不用或少用冷却液、实现干切削、半干切削节能环保的机床不断出现,并在不断发展当中。在21世纪,绿色制造的大趋势将使各种节能环保机床加速发展,占领更多的世界市场。

10、多媒体技术的应用

多媒体技术集计算机、声像和通信技术于一体,使计算机具有综合处理声音、文字、图像和视频信息的能力,因此也对用户界面提出了图形化的要求。合理的人性化的用户界面极大地方便了非专业用户的使用,人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。除此以外,在数控技术领域应用多媒体技术可以做到信息处理综合化、智能化,应用于实时监控系统和生产现场设备的故障诊断、生产过程参数监测等,因此有着重大的应用价值。

机械加工的车铣复合加工中心的程序要怎么后处理呀

目前,国内较陈旧的曲轴生产线多数由普通机床和专用机床组成,生产效率和自动化程度相对较低。粗加工设备一般采用多刀车床车削曲轴主轴颈及连杆轴颈,工序质量稳定性差,容易产生较大的加工应力,难以达到合理的加工余量。精加工普遍采用MQ8260等普通曲轴磨床进行粗磨、半精磨、精磨、抛光,通常靠人工操作,加工质量不稳,尺寸一致性差。

老式生产线一个主要的特点就是普通设备太多,按加工球墨铸铁曲轴来计算,一条生产线有35~40台设备。笔者曾考查过国内某一锻钢曲轴生产线,粗加工采用普通外铣加工主轴颈和连杆颈,然后数控精车主轴颈和连杆颈,再经过多道工序的磨削方转入精加工工序。所以这条生产线设备达60多台,导致产品周转线长、场地占用面积大,其生产效率完全是靠多台设备分解工序和余量来提高的。

而当今的汽车发动机曲轴制造业面临的却是以下几个问题:

1.多品种、小批量生产;

2.交货期大大缩短;

3.降低生产成本;

4.难切削材料的出现使加工难度明显增加,加工中提出了许多需要解决的课题,如硬切削;

5.为保护环境,要求少用或不用切削液,即实现干式切削或准干式切削;

正是基于以上情况,进入21世纪以来,高速、高精、高效的复合加工技术及装备在汽车曲轴制造业中得到了迅速的应用,生产效率得到了很大提高,因此发动机曲轴生产线中生产设备数量得以减少。笔者曾在某一轿车发动机曲轴生产线看到,全线设备(包括热处理、表面强化)只有13台设备左右,产品周转线短、加工效率高、易于质量控制管理。

曲轴复合加工技术的发展

20世纪80年代后期,德国BOEHRINGER公司和HELLER公司开发出了完善的曲轴车-车拉机床,该加工工艺是将曲轴车削工艺与曲轴车拉工艺完美结合,生产效率高、加工精度好、柔性强、自动化程度高、换刀时间短,特别适合有沉割槽曲轴的加工,加工后曲轴可直接进行精磨,省去粗磨工序。因此,曲轴车-车拉加工工艺是目前国际上曲轴粗加工中流行的加工工艺之一。

20世纪90年代中期出现的新型CNC高速曲轴外铣机床使曲轴粗加工工艺又上了一个新台阶。CNC曲轴内铣与CNC高速曲轴外铣对比,内铣存在以下缺点:不容易对刀、切削速度较低(通常不大于160m/min)、非切削时间较长、机床投资较多、工序循环时间较长。而CNC高速曲轴外铣具有以下优点:切削速度高(可高达350m/min)、切削时间较短、工序循环时间较短、切削力较小、工件温升较低、刀具寿命高、换刀次数少,加工精度更高、柔性更好。因此,CNC高速曲轴外铣将是曲轴粗加工的发展方向。

笔者在江苏南亚自动车有限公司菲亚特轿车曲轴生产线见到德国BOEHRINGER公司两台设备,其中1台为数孔曲轴车-车拉机床,另外1台为CNC高速曲轴外铣,亲身体验了一次“削铁如泥”的感觉。据专家介绍,曲轴车-车拉机床特别适合于轴颈有沉割槽、平衡块侧面不用加工的曲轴;而高速外铣则不能加工轴向有沉割槽的曲轴。该铣床为德国BOEHRINGER公司的VDF315OM-4高速随动外铣床,它是德国BOEHRINGER公司专为汽车发动机曲轴设计制造的柔性数控铣床,该设备应用工件回转和铣刀进给伺服连动控制技术,可以一次装夹不改变曲轴回转中心,并随动跟踪铣削曲轴的连杆轴颈。VDF315OM-4高速随动外铣采用复合材料一体化结构床身,工件两端电子同步旋转驱动,具有干式切削、加工精度高、切削效率高等特点;该铣床使用SIEMENS840DCNC控制系统,通过输入零件的基本参数即可自动生成加工程序,可以加工长度在450~700mm、回转直径在380mm以内的各种曲轴,连杆轴颈直径误差为±0.02mm。

由上可以看出,曲轴粗加工比较流行的工艺是:主轴颈采用车拉工艺和高速外铣,连杆颈采用高速外铣,而且倾向于高速随动外铣,全部采用干式切削。由于国外此类设备价格昂贵,产品加工成本很高,国内一些机床生产厂家(如青海第二机床制造有限责任公司)相继开发出了数控曲轴车床、数控高速曲轴铣床,数控曲轴车拉机床等专用机床。

曲轴精加工采用国内数控磨床磨削情况已相当普遍,产品加工精度已有相当程度的提高。为满足曲轴日益提高的加工要求,对曲轴磨床提出了很高的要求。现代曲轴磨床除了要有很高的静态、动态刚度和很高的加工精度外,还要求有很高的磨削效率和更多的柔性。近年来,更要求曲轴磨床具有稳定的加工精度,为此,对曲轴磨床的工序能力系数规定了Cp≥1.67,这意味着要求曲轴磨床的实际加工公差要比曲轴给定的公差小一半。随着现代驱动和控制技术、测量控制、CBN(立方氮化硼)砂轮和先进的机床部件的应用,为曲轴磨床的高精度、高效磨削加工创造了条件。一种称之为连杆颈随动磨削的工艺。正是体现了这些新技术综合应用的具体成果。这种随动磨削工艺可显著地提高曲轴连杆颈的磨削效率、加工精度和加工柔性。在对连杆颈进行随动磨削时,曲轴以主轴颈为轴线进行旋转,并在一次装夹下磨削所有连杆颈。在磨削过程中,磨头实现往复摆动进给,跟踪着偏心回转的连杆颈进行磨削加工。要实现随动磨削,X轴除了必须具有高的动态性能外,还必须具有足够的跟踪精度,以确保连杆颈所要求的形状公差。CBN砂轮的应用是实现连杆颈随动磨削的重要条件。由于CBN砂轮耐磨性高,在磨削过程中砂轮的直径几乎是不变的,一次修整可磨削600~800条曲轴。CBN砂轮还可以采用很高的磨削速度,在曲轴磨床上一般可采用高达120~140m/s的磨削速度,磨削效率很高。

用于曲轴复合加工的机床

提到复合加工技术,就不得不提到复合加工机床,复合加工机床的定义也是随时代变化的。过去将加工中心称为复合加工机床,但因工具交换加工的品种受到*,而且也走不出切削加工的领域,现在已经不再将一般的加工中心称之为复合加工机床了。复合机床应具有工序集成功能,多种加工集成功能。从制造业所处的环境看,复合加工机床将一直是重点开发的机床产品之一,功能不断扩大,会向着“一台机床成为一个小工厂”的方向迈进。

在曲轴复合加工机床中,奥地利WFL公司生产的卧式车铣复合加工中心具有一定的代表性。WFL公司提出了“一次装卡,全部完工”的概念。M40G该车铣中心集成了双主轴车削中心,五轴加工中心,深孔镗、铣、钻和三坐标功能于一身,在一台具有双主轴的车铣复合加工中心上可以对曲轴进行完全加工,加工后的曲轴可直接转入精加工工序。目前国内也推出了类似的复合机床,在CIMT2005期间,沈阳数控机床有限责任公司展出的CKZ80-5车铣加工中心就是一台复合机床,代表了我国同类机床的最高水平。该机床五轴中X、Y、Z、B轴采用直线光栅尺或圆度光栅尺检测,可实现闭环控制。该加工中心备有48~96工位刀库可实现自动换刀,一次装卡可进行车、铣、钻、镗、攻丝等的加工。

在曲轴精加工方面,也出现了工序集成的CBN数控磨床,即一次装夹磨削全部曲轴主轴颈和连杆轴颈,此类磨床一般配双砂轮头架。日本TOYADA工机、德国勇克(JUNKER)、德国NAXOS等生产的此类数控磨床都是比较成熟的设备。这里简要介绍一下日本TOYADA工机开发生产的GF70M-T曲轴磨床的性能:该机床是为了满足多品种、低成本、高精度、大批量生产需要而设计的数控曲轴磨床,应用工件回转和砂轮进给伺服联动控制技术,可以一次装夹而不改变曲轴回转中心即可完成所有轴颈的磨削,包括随动跟踪磨削连杆轴颈;采用静压主轴、静压导轨、静压进给丝杠(砂轮头架)和线性光栅闭环控制,使用TOYADA工机生产的GC50CNC控制系统,磨削轴颈圆度精度可达到0.002mm;采用CBN砂轮,磨削线速度高达120m/s,配双砂轮头架,磨削效率极高。

曲轴加工中刀具材料多样化

切削刀具性能的提高为高效、高速加工发展提供了可能性,除了高速钢、硬质合金以外,超硬材料的发展起到了重要的作用。PCD、PCBN为难加工材料的切削、干切削、硬切削等的加工创造了条件。

为适应曲轴加工高速化、高效率、干式切削的需求,目前大量采用涂层刀具。涂层的材料从TiN发展为A12O3、TiC、ZrO2等,根据加工的要求,为提高耐高温的性能,又发展了TiCN、TiAlN、TiSiN、CrSiN等。现在PVD(物理气相沉积)、CVD(化学气相沉积)技术不断推陈出新,由单层发展成多层、千层、复合涂层,现在又发展成纳米涂层;深油孔的加工采用*钻加工代替普通加长高速钢钻头,钻孔和攻丝用硬质合金材料来代替过去的高速钢材料。目前曲轴的精加工也渐渐开始使用CBN砂轮加工,CBN砂轮价格昂贵,但由于加工效率和耐用度高,分摊到每个工件上的刀具费用反而比采用价格低廉的普通砂轮要低。据德国NAXOS磨床厂的资料显示,采用CBN砂轮加工时间通常可缩短50%,而加工费用可节约50%以上。

结语

以上主要从曲轴机械加工方面论述了曲轴加工的进展,由此可得出以下结论:曲轴多刀车削工艺将逐步退出历史舞台,尽管这一时期较长;高速高效加工在曲轴制造业已有相当程度的应用;适合于多品种、小批量的复合加工技术是今后曲轴加工的一个发展方向;切削刀具性能的提高为高效、高速、复合加工发展提供了技术保障。

为您准备的好内容:

www.haoxyx.com true http://getqq.haoxyx.com/g/3620/36204778.html report 17107 随着机械制造技术的不断发展,零件结构形式越来越复杂,对加工精度的要求也越来越高。加工过程中的多次换装不仅使得零件的加工质量无法得到保障,同时还因多次的工件安装、对刀等过程大大降低了加工效率。双主轴车削加工中心能够使得需要多个加工工序的工件一次装夹下完成所有加工,不仅减少了因多次装夹而导致的加工误差,还提高了加工效率,能很好地满足现代企业生产要求,尤其在航空、航天等领域,双主轴车削加工中心的高效应用具有举足轻重的作用。然而,由于该类机床的结构及运动形式复杂多样,在实际应用中存在数控程序编写及正确性检测困
最近关注
首页推荐
热门图片
最新添加资讯
24小时热门资讯
精彩资讯
精彩推荐
热点推荐
真视界
精彩图片
社区精粹
关于本站 | 广告服务 | 手机版 | 商务合作 | 免责申明 | 招聘信息 | 联系我们
Copyright © 2004-2017 haoxyx.com All Rights Reserved. 好心游戏网 版权所有
京ICP备10044368号-1 京公网安备11010802011102号